A meso-scale unit-cell based material model for the single-ply flexible-fabric armor

نویسندگان

  • M. Grujicic
  • G. Arakere
  • T. He
چکیده

A meso-scale unit-cell based material model for a prototypical plain-woven single-ply flexible armor is developed and implemented in a material user subroutine for use in commercial explicit finite element programs. The main intent of the model is to attain computational efficiency when calculating the mechanical response of the multi-ply fabric-based flexible armor material during its impact with various projectiles without significantly sacrificing the key physical aspects of the fabric microstructure, architecture and behavior. To validate the new model, a comparative finite element method (FEM) analysis is carried out in which: (a) the plain-woven single-ply fabric is modeled using conventional shell elements and weaving is done in an explicit manner by snaking the yarns through the fabric and (b) the fabric is treated as a planar continuum surface composed of conventional shell elements to which the new meso-scale unit-cell based material model is assigned. The results obtained show that the material model provides a reasonably good description for the fabric deformation and fracture behavior under different combinations of fixed and free boundary conditions. 2009 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Meso-scale Modeling of Tension Analysis of Pure and Intra-ply Hybrid Woven Composites Using Finite Element Method

One of the key issues associated with using of composites in various applications is their tensile behavior. The tensile behavior of a composite material is strongly influenced by the properties of its constituents and their distribution. This paper focuses on gaining some insights into the tensile process of pure and hybrid woven composite reinforced with brittle and ductile yarns. For this pu...

متن کامل

Multiscale Analysis of Transverse Cracking in Cross-Ply Laminated Beams Using the Layerwise Theory

A finite element model based on the layerwise theory is developed for the analysis of transverse cracking in cross-ply laminated beams. The numerical model is developed using the layerwise theory of Reddy, and the von Kármán type nonlinear strain field is adopted to accommodate the moderately large rotations of the beam. The finite element beam model is verified by comparing the present numeric...

متن کامل

Influence of the Dry Woven Fabrics Meso-structure on Fabric/fabric Contact Behaviour

The first stage of the RTM process concerns the preforming of the part. During the preforming of multilayered reinforcements, frictions between the plies occur. An experimental device designed to analyse the ply/ply, ply/tool and yarn/yarn frictions has been set up. Specific contact behaviour for ply/ply friction is directly related to shocks taking place between overhanging yarns of each sampl...

متن کامل

Damage in Textile Laminates of Various Inter-ply Shift

Deformation mechanisms and failure of textile laminates are strongly affected by inter-layer configurations – a mutual shift of the plies. To model it within a traditional framework, one must construct a representative volume element (RVE), which includes all the plies. This is a time consuming and computationally expensive work. As an alternative, the paper suggests boundary conditions (BC) im...

متن کامل

Estimation of Lamina Stiffness and Strength of Quadriaxial Non-Crimp Fabric Composites Based on Semi-Laminar Considerations

Quadriaxial non-crimp fabric (QNCF) composites are increasingly being used as primary structural materials in aircraft and automotive applications. Predicting the mechanical properties of QNCF lamina is more complicated compared with that of unidirectional (UD) composites, because of the knitting connection of different plies. In this study, to analyze the stiffness and strength of the QNCF com...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014